

1

University of California, Riverside
ENVIRONMENTAL STATISTICS

Course Number: ENSC 110

Quarter: Fall (2019–2020 academic year)
Units: 4 (Lecture: 3 hours; Laboratory: 3 hours)

Lecture: MWF 9:00 AM – 9:50 AM (Sci Labs 301)
Laboratory: W 4:00 PM – 6:50 PM (Sproul 2225)

Topics covered in Fall 2019

(Note: R will be used instead of Matlab starting from Academic Year 2020/2021)

Matrix algebra
Definitions of row/column vectors and N×M matrices, matrix multiplication, transposes,
determinants, cofactors, inverse, identity matrices.

Matlab programming
Storing data as vectors and matrices in Matlab, matrix operations, matrix multiplication versus
elementwise multiplication, plotting, input/output files, logics and loops, Fibonacci sequence,
Bisection method.

Summary statistics
Sample mean, sample standard deviation, standard error of sample mean, Central Limit
Theorem, weighted mean, weighted standard deviation, weighted standard error,
deseasonalization of climate data

Hypothesis testing
Generating random number using Lehman’s scheme, verifying the Central Limit Theorem by
Monte Carlo simulation, testing H0 and H1 hypotheses using Monte Carlo simulation and
Bootstrap resampling, testing the toxicity of the environment

Linear methods
Linear/quadratic/Lagrange interpolation, system of linear equations, Gaussian elimination, linear
matrix equations, linear/non-linear regression, least-squares minimization.

2

Mathematical formulae and concepts discussed in class:

Matrix transpose of a 3×2 matrix:
Ta b

a c e
c d

b d f
e f

 
   =      

 

Matrix multiplication of a 2×2 matrix:
a b e f ae bg af bh
c d g h ce dg cf dh

+ +    
=    + +    

Determinant of a 2×2 matrix: det
a b

ad bc
c d
 Δ = = − 
 

Matrix inverse of a 2×2 matrix:
1

1a b d b
c d c a

− −   
=   −Δ   

Bisection method: For a continuous function ()f x , if a b< and () () 0f a f b ≤ ,
then there must exist at least one root r lying between a and b.

Fibonacci sequence in ecology: 1 2 1 21; , 2n n nF F F F F n− −= = = + ≥ .

Weighted sample mean: 1

1

N
j jj

N
jj

w x
x

w
=

=

=
å
å

.

Weighted sample variance:
()2

12

1

n
j jj
n

jj

w x x
s

w
=

=

-
=
å

å
 (biased)

() ()

2
2

2
2

1 1

ˆ
1 n n

j jj j

ss
w w

= =

=
- å å

 (unbiased)

Gaussian (normal) distribution: ()
21 1; , exp

22
xf x m

m s
ss p

é ùæ ö-ê ú÷ç= - ÷çê ú÷çè øê úë û
, where x-¥£ £¥ .

Lehmer’s scheme: 1 mod , 2.n nr ar m n− ≥= 1r is the seed.
Monte Carlo/Bootstrap tests: Given a dataset X, the statistical significance of a sample

statistics ()θ X can be tested against the distribution of

(){ }*θ X , where { }*X are simulated samples or resamples.

Interpolation: Given n data points, the unique polynomial that passes through

all data points is given by 1

1

n
n

j
j

y p x −

=

= .

Vandermonde matrix: Given a vector []1
T

nx x x=  , the Vandermonde matrix is

a n×n square matrix, whose (i,j)-th element ijV is given by 1j
ix

− .
The least-squares solutions for:

(a) Line-fit 1 2y p x p= + : 1 2 2

xy x yp
x x

−=
−

 and 2 1p y p x= − .

(b) Multi-linear regression y Xp ε= + : () 1T T−
=p X X X y .

95% confidence interval for 1p :
11 0.025 pp z σ± , where 0.025 1.96z = for large samples ,

1

2
2

2
2

1 1

p
n n

j j
j j

n

n x x

σσ

= =

=
 

−  
 

 
, and 2 2

1

1
2

n

k
kn

σ ε
=

=
−  .

3

Matlab commands discussed in class:
save filename var format stores the specified variable var in a file named filename. format may

be '-mat' for a binary MAT-file format (default) or '-ascii' 8-digit ASCII format.
plot(X,Y,LineSpec,value) plots vector X versus vector Y on the same axes. LineSpec and value

together specify the line type, marker symbol, and color.
[j:i:k] creates a regularly-spaced vector going from j to k at a step i.
abs(x) returns the absolute value of x.
log10(x) returns the common logarithm (base 10) of x.
X' returns the complex-conjugate transpose of the 2D matrix X.
inv(X) returns the inverse of the square matrix X.
find(X) returns a vector containing the linear indices of each nonzero element in array X.
zeros(sz1,...,szN) and ones(sz1,...,szN) returns an sz1-by-sz2-by-…-by-szN array of 0’s and

1’s, respectively. e.g., zeros(2,3) returns a 2-by-3 array of 0’s; ones(5) returns a 5-by-5 array of 1’s.
diag(A) returns the diagonal of the matrix A or creates a square matrix with the vector A on the diagonal.
A*B performs a matrix multiplication of A and B.
A.*B and A./B performs element-by-element multiplication and division of A and B.
A\B solves the system of linear equations A*x=B. The matrices A and B must have the same number of rows. If

A is a rectangular m-by-n matrix with m~=n, and B is a column vector with m elements or a matrix with m
rows, then A\B returns a least-squares solution.

sum(A,dim) and prod(A,dim) returns the sum and the product of the array elements of A, respectively,
along the dimension dim.

mean(A,dim) returns the mean dimension dim. For example, if A is a matrix, then mean(A,2) is a column
vector containing the mean of each row.

std(A,flag,dim) and var(A,flag,dim) returns the standard deviation and the variance, respectively,
along dimension dim. When flag=0 (default), the return value is normalized by N−1, where N is the
number of observations. When flag=1, the return value is normalized by N.

length(X) returns the length of the largest array dimension in X.
numel(A) returns the number of elements, n, in array A, equivalent to prod(size(A)).
rem(a,m) returns the remainder after division of a by m, where a is the dividend and m is the divisor.
rand([sz1,...,szN]) returns uniformly distributed pseudorandom numbers over the interval (0,1) in an

sz1-by-sz2-by-…-by-szN array.
randi(imax,[sz1,...,szN]) returns pseudorandom integers between 1 and imax in an sz1-by-sz2-

by-…-by-szN array.
randn([sz1,...,szN]) returns Gaussian distributed pseudorandom numbers with a mean 0 and a standard

deviation 1 in an sz1-by-sz2-by-…-by-szN array.
normrnd(mu,sigma,[sz1,...,szN]) generates an sz1-by-sz2-by-…-by-szN array of normal random

numbers drawn from the normal distribution with mean mu and standard deviation sigma.
p=polyfit(x,y,n) finds the coefficients of a polynomial p(x) of degree n that fits the data in a least squares

sense. The result p is a row vector of length n+1 containing the polynomial coefficients in descending powers:
1 3

1 2 3 1 residualn n n
n ny p x p x p x p x p− −

+= + + + + + + .
y=polyval(p,x) returns the value of a polynomial of degree n evaluated at x. p is a vector of length n+1

whose elements are the coefficients in descending powers of the polynomial to be evaluated.
vq=interp1(x,v,xq) returns interpolated values of a 1-D function at specific query points using linear

interpolation. Vector x contains the sample points, and v contains the corresponding values, v(x). Vector xq
contains the coordinates of the query points.

y0=spline(x,y,x0) uses a cubic Hermite spline interpolation to find y0 at x0 given y as a function of x.
[p,pint] = regress(y,X) returns a vector p of coefficient estimates for a multiple linear regression of

the responses in vector y on the predictors in matrix X. The matrix X must include a column of ones. The
matrix pint returns the 95% confidence intervals for the coefficient estimates in rows.

p=lsqcurvefit(fun,p0,x,y) starts at p0 and finds coefficients p to best fit the nonlinear function
given by the function handle fun to the data y (in the least-squares sense). fun must accept two input
variables, p and x, in that order, and return a vector of the same size as y.

